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3 Representation Theory

In this lecture we discuss the representation theory of Uq(sl2). As we shall see

shortly, when q is not a root of unity, the theory closely mirrors the classical case.

We also briefly discuss the root of unity situation, which turns out to be more

involved. Explicit proofs of the results stated here can be found in [1].

3.1 q-Integers

For any fixed value of q, the set of q-integers is composed of elements

[a]q =
qa − q−a

(q − q−1)
= qa−1 + qa−3 + · · · + q−a+1, (a ∈ Z).

Some easily verifiable results about the q-integers are:

[−a]q = −[a]q, [a + b] = qb[a]q + q−a[b]q = q−b[a]q + qa[b]q,

and, for q not a root of unity, we have [a]q 6= 0. Moreover, we can build upon the

definition of a q-integer to produce q-analogues of other familiar integer functions:

[a]q! := [1]q[2]q · · · [a − 1]q[a]q,

(

a

b

)

q

:=
[a]q!

[b]q![a − b]q!
.

While q-integers are ubiquitous in the theory of quantum groups, they are a much

older idea, going back at least to the work of Boole.

3.2 The Representations Tω,l

Now that we have defined the q-integers, we can introduce a distinguished class of

representations for Uq(sl2):

Definition 3.1. For l ∈ 1
2
N0, and ω ∈ {−1, 1}, let Vl be the (2l + 1)-dimensional

vector space with basis {em |m = −l,−l + 1, · · · , l − 1, l}. We define operators
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Tω,l(E), Tω,l(F ), and Tω,l(K) acting on Vl by

Tω,l(K)em = ωq2mem, Tω,l(E)em =
√

[l − m]q[l + m + 1]q)em+1,

Tω,l(F )em = ω
√

[l + m]q[l − m + 1]q)em+1.

This gives a representation of Uq(sl2), which we denote by Tω,l.

We note that the representations of Uq(sl2) have an extra parameter than the

representations of the classical enveloping algebra U(sl2). In can be explained (in

the q = 1 case at least) by the fact 1sl2 needs to be quotiented by the ideal 〈K − 1〉

in order to arrive at the classical enveloping algebra U(sl2).

For Cq the quantum Casimir defined in the previous lecture, a simple calculation

will demonstrate that

Tω,l(Cq) = ω(ql+1 + q−l−1)(q − q−1)−2id.

Thus, we see that just as in the classical case, the image of the Casimir under Tω,l

acts through scalar multiplication.

The following two propositions demonstrate the importance of these representa-

tions, and recalls the classical case.

Proposition 3.2 For any l ∈ N0, and ω ∈ {−1, 1}, the representation Tω,l is

irreducible. If (ω, l) 6= (ω′, l′), then T(ω,l) and T(ω′,l′) are not equivalent, and the

values of the operators T(ω,l)(Cq) and T(ω′,l′)(Cq) are different.

Proposition 3.3 Any irreducible finite-dimensional representation T of Uq(sl2)

is equivalent to one of the representations Tω,l, for l ∈ 1
2
N0, and ω ∈ {−1, 1}.

3.3 The Generic Case

We this section we will assume that q is not a root of unity, which is to say we will

work in the generic setting.

Let T be a finite dimensional representation of Uq(sl2). For any complex number

λ ∈ C, we set

Vλ := {v ∈ V | T (K)v = λv}.
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If Vλ 6= {0}, then we call Vλ a weight space, and λ a weight, of the representation

T . The non-zero elements of Vλ are called weight vectors. A weight vector v for

which it holds that

T (E)v = 0, and T (K)v = µv, (µ ∈ C),

is called a highest weight vector of T , while µ is called a highest weight of T . If T

is the linear span of weight spaces of T , then T is called a weight representation.

Proposition 3.4 Every finite dimensional representation of Uq(sl2) is a weight

representation.

We say that a representation of an Uq(sl2) is completely reducible if it decomposes

as a direct sum of irreducible sub-representations.

Proposition 3.5 Any finite dimensional representation T of Uq(sl2) is completely

reducible.

3.4 The Root of Unity Case

When q is a root of unity, things become more complicated. There can exist finite

dimensional representations of Uq(sl2) which are not completely reducible. Indeed,

for k an integer for which qk = 1, and denoting k′ = k if p is odd, and k/2 is k is

even, we have the following result:

Proposition 3.6 Every irreducible representation of Uq(sl2) has dimension less

than or equal to k′.
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